K-means Clustering in Python
K-means clustering is a clustering algorithm that aims to partition $n$ observations into $k$ clusters.
There are 3 steps:
- Initialisation – K initial “means” (centroids) are generated at random
- Assignment – K clusters are created by associating each observation with the nearest centroid
- Update – The centroid of the clusters becomes the new mean
Assignment and Update are repeated iteratively until convergence
The end result is that the sum of squared errors is minimised between points and their respective centroids.
We’ll do this manually first, then show how it’s done using scikit-learn
Let’s view it in action using k=3:
## Initialisation
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
df = pd.DataFrame({
'x': [12, 20, 28, 18, 29, 33, 24, 45, 45, 52, 51, 52, 55, 53, 55, 61, 64, 69, 72],
'y': [39, 36, 30, 52, 54, 46, 55, 59, 63, 70, 66, 63, 58, 23, 14, 8, 19, 7, 24]
})
np.random.seed(200)
k = 3
# centroids[i] = [x, y]
centroids = {
i+1: [np.random.randint(0, 80), np.random.randint(0, 80)]
for i in range(k)
}
fig = plt.figure(figsize=(5, 5))
plt.scatter(df['x'], df['y'], color='k')
colmap = {1: 'r', 2: 'g', 3: 'b'}
for i in centroids.keys():
plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.show()
## Assignment Stage
def assignment(df, centroids):
for i in centroids.keys():
# sqrt((x1 - x2)^2 - (y1 - y2)^2)
df['distance_from_{}'.format(i)] = (
np.sqrt(
(df['x'] - centroids[i][0]) ** 2
+ (df['y'] - centroids[i][1]) ** 2
)
)
centroid_distance_cols = ['distance_from_{}'.format(i) for i in centroids.keys()]
df['closest'] = df.loc[:, centroid_distance_cols].idxmin(axis=1)
df['closest'] = df['closest'].map(lambda x: int(x.lstrip('distance_from_')))
df['color'] = df['closest'].map(lambda x: colmap[x])
return df
df = assignment(df, centroids)
print(df.head())
fig = plt.figure(figsize=(5, 5))
plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')
for i in centroids.keys():
plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.show()
## Update Stage
import copy
old_centroids = copy.deepcopy(centroids)
def update(k):
for i in centroids.keys():
centroids[i][0] = np.mean(df[df['closest'] == i]['x'])
centroids[i][1] = np.mean(df[df['closest'] == i]['y'])
return k
centroids = update(centroids)
fig = plt.figure(figsize=(5, 5))
ax = plt.axes()
plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')
for i in centroids.keys():
plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
for i in old_centroids.keys():
old_x = old_centroids[i][0]
old_y = old_centroids[i][1]
dx = (centroids[i][0] - old_centroids[i][0]) * 0.75
dy = (centroids[i][1] - old_centroids[i][1]) * 0.75
ax.arrow(old_x, old_y, dx, dy, head_width=2, head_length=3, fc=colmap[i], ec=colmap[i])
plt.show()
## Repeat Assigment Stage
df = assignment(df, centroids)
# Plot results
fig = plt.figure(figsize=(5, 5))
plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')
for i in centroids.keys():
plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.show()
Note that one of the reds is now green and one of the blues is now red.
We are getting closer.
We now repeat until there are no changes to any of the clusters.
# Continue until all assigned categories don't change any more
while True:
closest_centroids = df['closest'].copy(deep=True)
centroids = update(centroids)
df = assignment(df, centroids)
if closest_centroids.equals(df['closest']):
break
fig = plt.figure(figsize=(5, 5))
plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')
for i in centroids.keys():
plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.show()
So we have 3 clear clusters with 3 means at the centre of these clusters.
We will now repeat the above using scikit-learn, we first fit to our data
df = pd.DataFrame({
'x': [12, 20, 28, 18, 29, 33, 24, 45, 45, 52, 51, 52, 55, 53, 55, 61, 64, 69, 72],
'y': [39, 36, 30, 52, 54, 46, 55, 59, 63, 70, 66, 63, 58, 23, 14, 8, 19, 7, 24]
})
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
kmeans.fit(df)
Then we learn the labels
labels = kmeans.predict(df)
centroids = kmeans.cluster_centers_
fig = plt.figure(figsize=(5, 5))
colors = map(lambda x: colmap[x+1], labels)
plt.scatter(df['x'], df['y'], color=colors, alpha=0.5, edgecolor='k')
for idx, centroid in enumerate(centroids):
plt.scatter(*centroid, color=colmap[idx+1])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.show()
We get the exact same result, albeit with the colours in a different order.
Some things to take note of though:
- k-means clustering is very sensitive to scale due to its reliance on Euclidean distance so be sure to normalize data if there are likely to be scaling problems.
- If there are some symmetries in your data, some of the labels may be mis-labelled
- It is recommended to do the same k-means with different initial centroids and take the most common label.